Interacting oscillatory boundary layers and wall modes in modulated rotating convection

نویسندگان

  • A. RUBIO
  • J. M. LOPEZ
  • F. MARQUES
چکیده

Thermal convection in a rotating cylinder near onset is investigated using direct numerical simulations of the Navier–Stokes equations with the Boussinesq approximation in a regime dominated by the Coriolis force. For thermal driving too small to support convection throughout the entire cell, convection sets in as alternating pairs of hot and cold plumes in the sidewall boundary layer, the so-called wall modes of rotating convection. We subject the wall modes to small amplitude harmonic modulations of the rotation rate over a wide range of frequencies. The modulations produce harmonic Ekman boundary layers at the top and bottom lids as well as a Stokes boundary layer at the sidewall. These boundary layers drive a time-periodic large-scale circulation that interacts with the wall-localized thermal plumes in a nontrivial manner. The resultant phenomena include a substantial shift in the onset of wall-mode convection to higher temperature differences for a broad band of frequencies, as well as a significant alteration of the precession rate of the wall mode at very high modulation frequencies due to the mean azimuthal streaming flow resulting from the modulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Convection in a (Kuvshiniski-type) Viscoelastic Rotating Fluid in the Presence of Magnetic Field through Porous Medium (TECHNICAL NOTE)

  The effect of magnetic field on an incompressible (Kuvshiniski-Type) viscoelastic rotating fluid heated from below in porous medium is considered. For the case of stationary convection, magnetic field and medium permeability have both stabilizing and destabilizing effect on the thermal convection under some conditions whereas rotation has a stabilizing effect on the thermal convection. In the...

متن کامل

Thermal Convection of Rotating Micropolar Fluid in Hydromagnetics Saturating A Porous Medium

This paper deals with the theoretical investigation of the thermal instability of a thin layer of electrically conducting micropolar rotating fluid, heated from below in the presence of uniform vertical magnetic field in porous medium. A dispersion relation is obtained for a flat fluid layer, contained between two free boundaries using a linear stability analysis theory, and normal mode analysi...

متن کامل

Thermosolutal Convection of Micropolar Rotating Fluids Saturating a Porous Medium

Double-diffusive convection in a micropolar fluid layer heated and soluted from below in the presence of uniform rotation saturating a porous medium is theoretically investigated. An exact solution is obtained for a flat fluid layer contained between two free boundaries. To study the onset of convection, a linear stability analysis theory and normal mode analysis method have been used. For the ...

متن کامل

Influence of wall modes on the onset of bulk convection in a rotating cylinder

The onset of thermal convection in an enclosed rotating cylinder is greatly influenced by the interaction between the Coriolis force and the cylinder sidewall. For temperature differences between the hot bottom and the cool top that are too small to sustain convection throughout the entire cylinder, convection sets in as pairs of wall-bounded hot thermal plumes ascend and cold thermal plumes de...

متن کامل

Onset of convection in a moderate aspect-ratio rotating cylinder: Eckhaus–Benjamin–Feir instability

A numerical study of the onset of thermal convection in a rotating circular cylinder of radius-to-depth ratio equal to four is considered in a regime dominated by the Coriolis force where the onset is to so-called wall modes. The wall modes consist of hot and cold pairs of thermal plumes rising and descending in the cylinder wall boundary layer, forming an essentially one-dimensional pattern ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008